skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wu, Shushan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 27, 2026
  2. Free, publicly-accessible full text available March 1, 2026
  3. Free, publicly-accessible full text available March 15, 2026
  4. Free, publicly-accessible full text available November 1, 2025
  5. This study presents a comprehensive analysis of three types of multimodal data‐response accuracy, response times, and eye‐tracking data‐derived from a computer‐based spatial rotation test. To tackle the complexity of high‐dimensional data analysis challenges, we have developed a methodological framework incorporating various statistical and machine learning methods. The results of our study reveal that hidden state transition probabilities, based on eye‐tracking features, may be contingent on skill mastery estimated from the fluency CDM model. The hidden state trajectory offers additional diagnostic insights into spatial rotation problem‐solving, surpassing the information provided by the fluency CDM alone. Furthermore, the distribution of participants across different hidden states reflects the intricate nature of visualizing objects in each item, adding a nuanced dimension to the characterization of item features. This complements the information obtained from item parameters in the fluency CDM model, which relies on response accuracy and response time. Our findings have the potential to pave the way for the development of new psychometric and statistical models capable of seamlessly integrating various types of multimodal data. This integrated approach promises more meaningful and interpretable results, with implications for advancing the understanding of cognitive processes involved in spatial rotation tests. 
    more » « less